The shadows of accelerating Kerr-Newman black hole and constraints from M87*
Autor: | Sui, Tao-Tao, Fu, Qi-Ming, Guo, Wen-Di |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1016/j.physletb.2023.138135 |
Popis: | In this paper, we study the influence of the parameters for the accelerating Kerr-Newman black hole on the shadows and the constraints, extensively. We find that the rotating parameter $a$, the charge parameter $e$, and the inclination angle $\theta_0$ affect the shadow qualitatively similar to that of Kerr-Newman black holes. The result shows that the size of the shadow will scale down with the accelerating factor $A$. Besides, the factor $A$ also can affect the best viewing angles, which make the observations maximum deviate from $\theta_0=\frac{\pi}{2}$, and the degree of the deviations are less than $1\%$. Then, we assume the M87* as an accelerating Kerr-Newman black hole with the mass $M=6.5\times10^9M_\odot$ and the distance $r_0=16.8Mpc$. Combining the EHT observations, we find that neither the observations, circularity deviation $\Delta C$ or axial ratio $D_x$ can distinguish the accelerating black hole or not. However, the characteristic areal-radius of the shadow curve $R_a$ can give corresponding constraints on the parameters of the accelerating Kerr-Newman black hole. The results shows that the bigger accelerating factor $A$ is, the stronger constraints on the rotating parameter $a$ and charged parameter $e$. {The maximum range of the accelerating factor is $Ar_0\leq0.558$ for a accelerating Schwarzschild case with $(a/M=e/M=0)$, and for an extremely slow accelerating case $(Ar_0\leq0.01)$, the ranges of rotating parameter $a$ and charged parameter $e$ are $a/M\in(0,1)$ and $e/M\in(0,0.9)$. Comment: 9 pages, 16figures |
Databáze: | arXiv |
Externí odkaz: |