Three-Dimensional Eigenvalues of Harmonic Oscillator- and Coulomb-type Potentials from One-Dimensional Generalized Morse Potential: Perturbative Analyse based on Generalized Laguerre Polynomials
Autor: | Arda, Altug |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Eur. Phys. J. Plus 138, 1007 (2023) |
Druh dokumentu: | Working Paper |
DOI: | 10.1140/epjp/s13360-023-04616-8 |
Popis: | We present perturbative energy eigenvalues (up to second order) of Coulomb- and harmonic oscillator-type fields within a perturbation scheme. We have the required unperturbed eigenvalues ($E_{n}^{(0)}$) analytically obtained by using similarities between the expressions obtained from unperturbed Hamiltonian(s) for two fields and obtained from the ones for one-dimensional generalized Morse field. We use the Langer transformation for this aim. We need the diagonal and non-diagonal matrix elements of unperturbed and perturbed Hamiltonians to get energy eigenvalues perturbatively, which are obtained with help of some recursion identities or some integrals of generalized Laguerre polynomials having analytical results. Comment: 14 pages |
Databáze: | arXiv |
Externí odkaz: |