A survey on skein modules via braids
Autor: | Diamantis, Ioannis |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper we present recent results on the computation of skein modules of 3-manifolds using braids and appropriate knot algebras. Skein modules generalize knot polynomials in $S^3$ to knot polynomials in arbitrary 3-manifolds and they have become extremely essential algebraic tools in the study of 3-manifolds. In this paper we present the braid approach to the HOMFLYPT and the Kauffman bracket skein modules of the Solid Torus ST and the lens spaces $L(p,1)$ and $S^1\times S^2$. Comment: 34 pages, 31 figures. arXiv admin note: text overlap with arXiv:2005.00737, arXiv:2204.00410, arXiv:1702.06290, arXiv:2307.12275 |
Databáze: | arXiv |
Externí odkaz: |