Projective symmetry determined topology in flux Su-Schrieffer-Heeger model

Autor: Jiang, Gang, Chen, Z. Y., Yue, S. J., Rui, W. B., Zhu, Xiao-Ming, Yang, Shengyuan A., Zhao, Y. X.
Rok vydání: 2023
Předmět:
Zdroj: Phys. Rev. B 109, 115155 (2024)
Druh dokumentu: Working Paper
DOI: 10.1103/PhysRevB.109.115155
Popis: In the field of symmetry-protected topological phases, a common wisdom is that the symmetries fix the topological classifications, but they alone cannot determine whether a system is topologically trivial or not. Here, we show that this is no longer true in cases where symmetries are projectively represented. Particularly, the Zak phase, a topological invariant of a one-dimensional system, can be entirely determined by the projective symmetry algebra (PSA). To demonstrate this remarkable effect, we propose a minimal model, termed as flux Su-Schrieffer-Heeger (SSH) model, where the bond dimerization in the original SSH model is replaced by a flux dimerization. We present experimental realization of our flux SSH model in an electric-circuit array, and our predictions are directly confirmed by experimental measurement. Our work refreshes the understanding of the relation between symmetry and topology, opens up new avenues for exploring PSA determined topological phases, and suggests flux dimerization as a novel approach for designing topological crystals.
Comment: 6 pages, 3 figures
Databáze: arXiv