Subsquares in random Latin squares and rectangles
Autor: | Divoux, Alexander, Kelly, Tom, Kennedy, Camille, Sidhu, Jasdeep |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | A $k \times n$ partial Latin rectangle is \textit{$C$-sparse} if the number of nonempty entries in each row and column is at most $C$ and each symbol is used at most $C$ times. We prove that the probability a uniformly random $k \times n$ Latin rectangle, where $k < (1/2 - \alpha)n$, contains a $\beta n$-sparse partial Latin rectangle with $\ell$ nonempty entries is $(\frac{1 \pm \varepsilon}{n})^\ell$ for sufficiently large $n$ and sufficiently small $\beta$. Using this result, we prove that a uniformly random order-$n$ Latin square asymptotically almost surely has no Latin subsquare of order greater than $c\sqrt{n\log n}$ for an absolute constant $c$. Comment: 11 pages; 1 page appendix, corrected a typo in random Steiner system conjecture |
Databáze: | arXiv |
Externí odkaz: |