Cohen-Macaulay permutation graphs
Autor: | Cheri, P. V., Dey, Deblina, K, Akhil, Kotal, Nirmal, Veer, Dharm |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Math. Scand. 130 (2024) 419-431 |
Druh dokumentu: | Working Paper |
DOI: | 10.7146/math.scand.a-149033 |
Popis: | In this article, we characterize Cohen-Macaulay permutation graphs. In particular, we show that a permutation graph is Cohen-Macaulay if and only if it is well-covered and there exists a unique way of partitioning its vertex set into $r$ disjoint maximal cliques, where $r$ is the cardinality of a maximal independent set of the graph. We also provide some sufficient conditions for a comparability graph to be a uniquely partially orderable (UPO) graph. Comment: 9 pages, 4 figures; comments are welcome |
Databáze: | arXiv |
Externí odkaz: |