Weak monotonicity property of Korevaar-Schoen norms on nested fractals
Autor: | Chang, Diwen, Gao, Jin, Yu, Zhenyu, Zhang, Junda |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper, we study the weak monotonicity property of p-energy related Korevaar-Schoen norms on connected nested fractals for $1 < p < \infty$. Such property has many important applications on fractals and other metric measure spaces, such as constructing p-energies (when $p = 2$ this is basically a Dirichlet form), generalizing the classical Sobolev type inequalities and the celebrated Bourgain-Brezis-Mironescu convergence. Comment: 10 pages,1 figure |
Databáze: | arXiv |
Externí odkaz: |