Group theoretic approach to cyclic cubic fields
Autor: | Aouissi, Siham, Mayer, Daniel C. |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Mathematics, Volume 12, Issue 1, 126 (2024) |
Druh dokumentu: | Working Paper |
DOI: | 10.3390/math12010126 |
Popis: | Let (k1,k2,k3,k4) be a quartet of cyclic cubic number fields sharing a common conductor c=pqr divisible by exactly three prime(power)s p,q,r. For those components k of the quartet whose 3-class group Cl(3,k) = Z/3Z x Z/3Z is elementary bicyclic, the automorphism group M = Gal(F(3,2,k)/k) of the maximal metabelian unramified 3-extension of k is determined by conditions for cubic residue symbols between p,q,r and for ambiguous principal ideals in subfields of the common absolute 3-genus field k* of k1,k2,k3,k4. With the aid of the relation rank d2(M), it is decided whether M coincides with the Galois group G = Gal(F(3,infinity,k)/k) of the maximal unramified pro-3-extension of k. Comment: 46 pages, 21 tables |
Databáze: | arXiv |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |