Twisting the Infinitesimal Site
Autor: | Mundinger, Joshua |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1093/imrn/rnae186 |
Popis: | We classify twistings of Grothendieck's differential operators on a smooth variety $X$ in prime characteristic $p$. We prove isomorphism classes of twistings are in bijection with $H^2(X,\mathbb{Z}_p(1))$, the degree 2, weight 1 syntomic cohomology of $X$. We also discuss the relationship between twistings of crystalline and Grothendieck differential operators. Twistings in mixed characteristic are also analyzed. Comment: 21 pages. Final version, to appear in IMRN. Comments welcome |
Databáze: | arXiv |
Externí odkaz: |