$\mathbb{Z}_2$-extension of real quadratic fields with $\mathbb{Z}/2\mathbb{Z}$ as $2$-class group at each layer
Autor: | Laxmi, H, Saikia, Anupam |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $K= \mathbb{Q}(\sqrt{d})$ be a real quadratic field with $d$ having three distinct prime factors. We show that the $2$-class group of each layer in the $\mathbb{Z}_2$-extension of $K$ is $\mathbb{Z}/2\mathbb{Z}$ under certain elementary assumptions on the prime factors of $d$. In particular, it validates Greenberg's conjecture on the vanishing of the Iwasawa $\lambda$-invariant for a new family of infinitely many real quadratic fields. Comment: 14 pages, 3 pages |
Databáze: | arXiv |
Externí odkaz: |