On the Challenges of Fully Incremental Neural Dependency Parsing
Autor: | Ezquerro, Ana, Gómez-Rodríguez, Carlos, Vilares, David |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Since the popularization of BiLSTMs and Transformer-based bidirectional encoders, state-of-the-art syntactic parsers have lacked incrementality, requiring access to the whole sentence and deviating from human language processing. This paper explores whether fully incremental dependency parsing with modern architectures can be competitive. We build parsers combining strictly left-to-right neural encoders with fully incremental sequence-labeling and transition-based decoders. The results show that fully incremental parsing with modern architectures considerably lags behind bidirectional parsing, noting the challenges of psycholinguistically plausible parsing. Comment: Accepted at IJCNLP-AACL 2023 |
Databáze: | arXiv |
Externí odkaz: |