Popis: |
Repulsive short-range and attractive long-range van der Waals (vdW) forces have an appreciable role in the behavior of extended molecular systems. When using empirical force fields - the most popular computational methods applied to such systems - vdW forces are typically described by Lennard-Jones-like potentials, which unfortunately have a limited predictive power. Here, we present a universal parameterization of a quantum-mechanical vdW potential, which requires only two free-atom properties - the static dipole polarizability $\alpha_1$ and the dipole-dipole $C_6$ dispersion coefficient. This is achieved by deriving the functional form of the potential from the quantum Drude oscillator (QDO) model, employing scaling laws for the equilibrium distance and the binding energy as well as applying the microscopic law of corresponding states. The vdW-QDO potential is shown to be accurate for vdW binding energy curves, as demonstrated by comparing to ab initio binding curves of 21 noble-gas dimers. The functional form of the vdW-QDO potential has the correct asymptotic behavior both at zero and infinite distances. In addition, it is shown that the damped vdW-QDO potential can accurately describe vdW interactions in dimers consisting of group II elements. Finally, we demonstrate the applicability of the atom-in-molecule vdW-QDO model for predicting accurate dispersion energies for molecular systems. The present work makes an important step towards constructing universal vdW potentials, which could benefit (bio)molecular computational studies. |