Actions of acylindrically hyperbolic groups on $\ell^1$
Autor: | Drutu, Cornelia, Mackay, John M. |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We construct affine uniformly Lipschitz actions on $\ell^1$ and $L^1$ for certain groups with hyperbolic features. For acylindrically hyperbolic groups, our actions have unbounded orbits, while for residually finite hyperbolic groups and for mapping class groups, the actions have proper orbits, with the induced $L^1$-metric quasi-isometric (respectively, almost quasi-isometric) to the word metric. Comment: 38 pages |
Databáze: | arXiv |
Externí odkaz: |