Borel-de Siebenthal Positive Root Systems
Autor: | Paul, Pampa |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let G be a connected simple Lie group with finite centre, K be a maximal compact subgroup of G, and rank(G)= rank(K). Let \frak{g}_0=Lie(G), \frak{k}_0=Lie(K) \subset \frak{g}_0, \frak{t}_0 be a maximal abelian subalgebra of \frak{k}_0, \frak{g}=\frak{g}_0^\mathbb{C}, \frak{k}=\frak{k}_0^\mathbb{C}, and \frak{h}=\frak{t}_0^\mathbb{C}. In this article, we have determined all Borel-de Siebenthal positive root systems of \Delta=\Delta(\frak{g}, \frak{h}), the number of unitary equivalence classes of all discrete series representations of G with trivial infinitesimal character, the number of unitary equivalence classes of all holomorphic discrete series representations of G (if G/K is Hermitian symmetric) with trivial infinitesimal character, and the number of unitary equivalence classes of all Borel-de Siebenthal discrete series representations of G (if G/K is not Hermitian symmetric) with trivial infinitesimal character. Comment: 12 pages, 6 figures |
Databáze: | arXiv |
Externí odkaz: |