On the amenable subalgebras of group von Neumann algebras
Autor: | Amrutam, Tattwamasi, Hartman, Yair, Oppelmayer, Hanna |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Journal of Functional Analysis, 2024 |
Druh dokumentu: | Working Paper |
DOI: | 10.1016/j.jfa.2024.110718 |
Popis: | We approach the study of sub-von Neumann algebras of the group von Neumann algebra $L\Gamma$ for countable groups $\Gamma$ from a dynamical perspective. It is shown that $L(\Gamma)$ admits a maximal invariant amenable subalgebra. The notion of invariant probability measures (IRAs) on the space of sub-algebras is introduced, analogous to the concept of Invariant Random Subgroups. And it is shown that amenable IRAs are supported on the maximal amenable invariant sub-algebra. Comment: This final version will appear in the Journal of Functional Analysis |
Databáze: | arXiv |
Externí odkaz: |