On the amenable subalgebras of group von Neumann algebras

Autor: Amrutam, Tattwamasi, Hartman, Yair, Oppelmayer, Hanna
Rok vydání: 2023
Předmět:
Zdroj: Journal of Functional Analysis, 2024
Druh dokumentu: Working Paper
DOI: 10.1016/j.jfa.2024.110718
Popis: We approach the study of sub-von Neumann algebras of the group von Neumann algebra $L\Gamma$ for countable groups $\Gamma$ from a dynamical perspective. It is shown that $L(\Gamma)$ admits a maximal invariant amenable subalgebra. The notion of invariant probability measures (IRAs) on the space of sub-algebras is introduced, analogous to the concept of Invariant Random Subgroups. And it is shown that amenable IRAs are supported on the maximal amenable invariant sub-algebra.
Comment: This final version will appear in the Journal of Functional Analysis
Databáze: arXiv