Popis: |
While traditionally regarded as an obstacle to quantum coherence, recent breakthroughs in quantum optics have shown that the dissipative interaction of a qubit with its environment can be leveraged to protect quantum states and synthesize many-body entanglement. Inspired by this progress, here we set the stage for the -- yet uncharted -- exploration of analogous cooperative phenomena in hybrid solid-state platforms. We develop a comprehensive formalism for the quantum many-body dynamics of an ensemble of solid-state spin defects interacting dissipatively with the magnetic field fluctuations of a common solid-state reservoir. Our framework applies to any solid-state reservoir whose fluctuating spin, pseudospin, or charge degrees of freedom generate magnetic fields. To understand whether correlations induced by dissipative processes can play a relevant role in a realistic experimental setup, we apply our model to a qubit array interacting via the spin fluctuations of a ferromagnetic bath. Our results show that the low-temperature collective relaxation rates of the qubit ensemble can display clear signatures of super- and subradiance, i.e., forms of cooperative dynamics traditionally achieved in atomic ensembles. We find that the solid-state analog of these cooperative phenomena is robust against spatial disorder in the qubit ensemble and thermal fluctuations of the magnetic reservoir, providing a route for their feasibility in near-term experiments. Our work lays the foundation for a multi-qubit approach to quantum sensing of solid-state systems and the direct generation of many-body entanglement in spin-defect ensembles. Furthermore, we discuss how the tunability of solid-state reservoirs opens up novel pathways for exploring cooperative phenomena in regimes beyond the reach of conventional quantum optics setups. |