The Weil bound for generalized Kloosterman sums of half-integral weight
Autor: | Andersen, Nickolas, Anderson, Gradin, Woodall, Amy |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $L$ be an even lattice of odd rank with discriminant group $L'/L$, and let $\alpha,\beta \in L'/L$. We prove the Weil bound for the Kloosterman sums $S_{\alpha,\beta}(m,n,c)$ of half-integral weight for the Weil Representation attached to $L$. We obtain this bound by proving an identity that relates a divisor sum of Kloosterman sums to a sparse exponential sum. This identity generalizes Kohnen's identity for plus space Kloosterman sums with the theta multiplier system. Comment: 22 pages |
Databáze: | arXiv |
Externí odkaz: |