Dominated splitting from constant periodic data and global rigidity of Anosov automorphisms
Autor: | DeWitt, Jonathan, Gogolev, Andrey |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We show that a $\mathrm{GL}(d,\mathbb{R})$ cocycle over a hyperbolic system with constant periodic data has a dominated splitting whenever the periodic data indicates it should. This implies global periodic data rigidity of generic Anosov automorphisms of $\mathbb{T}^d$. Further, our approach also works when the periodic data is narrow, that is, sufficiently close to constant. We can show global periodic data rigidity for certain non-linear Anosov diffeomorphisms in a neighborhood of an irreducible Anosov automorphism with simple spectrum. Comment: 25 pages; improvements to the exposition |
Databáze: | arXiv |
Externí odkaz: |