Relative residual bounds for eigenvalues in gaps of the essential spectrum
Autor: | Seelmann, Albrecht |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Oper. Matrices 18 (2024), 191--203 |
Druh dokumentu: | Working Paper |
DOI: | 10.7153/oam-2024-18-13 |
Popis: | The relative distance between eigenvalues of the compression of a not necessarily semibounded self-adjoint operator to a closed subspace and some of the eigenvalues of the original operator in a gap of the essential spectrum is considered. It is shown that this distance depends on the maximal angles between pairs of associated subspaces. This generalises results by Drma\v{c} in [Linear Algebra Appl. 244 (1996), 155--163] from matrices to not necessarily (semi)bounded operators. Comment: 12 pages |
Databáze: | arXiv |
Externí odkaz: |