Relative residual bounds for eigenvalues in gaps of the essential spectrum

Autor: Seelmann, Albrecht
Rok vydání: 2023
Předmět:
Zdroj: Oper. Matrices 18 (2024), 191--203
Druh dokumentu: Working Paper
DOI: 10.7153/oam-2024-18-13
Popis: The relative distance between eigenvalues of the compression of a not necessarily semibounded self-adjoint operator to a closed subspace and some of the eigenvalues of the original operator in a gap of the essential spectrum is considered. It is shown that this distance depends on the maximal angles between pairs of associated subspaces. This generalises results by Drma\v{c} in [Linear Algebra Appl. 244 (1996), 155--163] from matrices to not necessarily (semi)bounded operators.
Comment: 12 pages
Databáze: arXiv