The maximum size of adjacency-crossing graphs

Autor: Ackerman, Eyal, Keszegh, Balázs
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
Popis: An adjacency-crossing graph is a graph that can be drawn such that every two edges that cross the same edge share a common endpoint. We show that the number of edges in an $n$-vertex adjacency-crossing graph is at most $5n-10$. If we require the edges to be drawn as straight-line segments, then this upper bound becomes $5n-11$. Both of these bounds are tight. The former result also follows from a very recent and independent work of Cheong et al.\cite{cheong2023weakly} who showed that the maximum size of weakly and strongly fan-planar graphs coincide. By combining this result with the bound of Kaufmann and Ueckerdt\cite{KU22} on the size of strongly fan-planar graphs and results of Brandenburg\cite{Br20} by which the maximum size of adjacency-crossing graphs equals the maximum size of fan-crossing graphs which in turn equals the maximum size of weakly fan-planar graphs, one obtains the same bound on the size of adjacency-crossing graphs. However, the proof presented here is different, simpler and direct.
Comment: 17 pages, 11 figures
Databáze: arXiv