Internal Levin-Wen models

Autor: Mulevicius, Vincentas, Runkel, Ingo, Voß, Thomas
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
Popis: Levin-Wen models are a class of two-dimensional lattice spin models with a Hamiltonian that is a sum of commuting projectors, which describe topological phases of matter related to Drinfeld centres. We generalise this construction to lattice systems internal to a topological phase described by an arbitrary modular fusion category $\mathcal{C}$. The lattice system is defined in terms of an orbifold datum $\mathbb{A}$ in $\mathcal{C}$, from which we construct a state space and a commuting-projector Hamiltonian $H_{\mathbb{A}}$ acting on it. The topological phase of the degenerate ground states of $H_{\mathbb{A}}$ is characterised by a modular fusion category $\mathcal{C}_{\mathbb{A}}$ defined directly in terms of $\mathbb{A}$. By choosing different $\mathbb{A}$'s for a fixed $\mathcal{C}$, one obtains precisely all phases which are Witt-equivalent to $\mathcal{C}$. As special cases we recover the Kitaev and the Levin-Wen lattice models from instances of orbifold data in the trivial modular fusion category of vector spaces, as well as phases obtained by anyon condensation in a given phase $\mathcal{C}$.
Comment: 73 pages
Databáze: arXiv