Non-perturbative localization for quasi-periodic Jacobi block matrices
Autor: | Han, Rui, Schlag, Wilhelm |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove non-perturbative Anderson localization for quasi-periodic Jacobi block matrix operators assuming non-vanishing of all Lyapunov exponents. The base dynamics on tori $\mathbb{T}^b$ is assumed to be a Diophantine rotation. Results on arithmetic localization are obtained for $b=1$, and applications to the skew shift, stacked graphene, XY spin chains, and coupled Harper models are discussed. Comment: 56 pages |
Databáze: | arXiv |
Externí odkaz: |