On the P\'olya conjecture for the Neumann problem in planar convex domains
Autor: | Filonov, N. |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Denote by $N_{\cal N} (\Omega,\lambda)$ the counting function of the spectrum of the Neumann problem in the domain $\Omega$ on the plane. G. P\'olya conjectured that $N_{\cal N} (\Omega,\lambda) \ge (4\pi)^{-1} |\Omega| \lambda$. We prove that for convex domains $N_{\cal N} (\Omega,\lambda) \ge (2 \sqrt 3 \,j_0^2)^{-1} |\Omega| \lambda$. Here $j_0$ is the first zero of the Bessel function $J_0$. |
Databáze: | arXiv |
Externí odkaz: |