On the P\'olya conjecture for the Neumann problem in planar convex domains

Autor: Filonov, N.
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
Popis: Denote by $N_{\cal N} (\Omega,\lambda)$ the counting function of the spectrum of the Neumann problem in the domain $\Omega$ on the plane. G. P\'olya conjectured that $N_{\cal N} (\Omega,\lambda) \ge (4\pi)^{-1} |\Omega| \lambda$. We prove that for convex domains $N_{\cal N} (\Omega,\lambda) \ge (2 \sqrt 3 \,j_0^2)^{-1} |\Omega| \lambda$. Here $j_0$ is the first zero of the Bessel function $J_0$.
Databáze: arXiv