Popis: |
In recent years, patch-based image restoration approaches have demonstrated superior performance compared to conventional variational methods. This paper delves into the mathematical foundations underlying patch-based image restoration methods, with a specific focus on establishing restoration guarantees for patch-based image inpainting, leveraging the assumption of self-similarity among patches. To accomplish this, we present a reformulation of the image inpainting problem as structured low-rank matrix completion, accomplished by grouping image patches with potential overlaps. By making certain incoherence assumptions, we establish a restoration guarantee, given that the number of samples exceeds the order of $rlog^2(N)$, where $N\times N$ denotes the size of the image and $r > 0$ represents the sum of ranks for each group of image patches. Through our rigorous mathematical analysis, we provide valuable insights into the theoretical foundations of patch-based image restoration methods, shedding light on their efficacy and offering guidelines for practical implementation. |