On blow-up conditions for nonlinear higher order evolution inequalities
Autor: | Kon'kov, A. A., Shishkov, A. E. |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | For the problem $$ \left\{ \begin{aligned} & \partial_t^k u - \sum_{|\alpha| = m} \partial^\alpha a_\alpha (x, t, u) \ge f (|u|) \quad \mbox{in } {\mathbb R}_+^{n+1} = {\mathbb R}^n \times (0, \infty), & u (x, 0) = u_0 (x), \: \partial_t u (x, 0) = u_1 (x), \ldots, \partial_t^{k-1} u (x, 0) = u_{k-1} (x) \ge 0, \end{aligned} \right. $$ we obtain exact conditions on the function $f$ guaranteeing that any global weak solution is identically zero. |
Databáze: | arXiv |
Externí odkaz: |