On the Hilbert depth of the Hilbert function of a finitely generated graded module

Autor: Balanescu, Silviu, Cimpoeas, Mircea
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
Popis: Let $K$ be a field, $A$ a standard graded $K$-algebra and $M$ a finitely generated graded $A$-module. Inspired by our previous works, we study the Hilbert depth of $h_M$, that is $$\operatorname{hdepth}(h_M)=\max\{d\;:\; \sum\limits_{j\leq k} (-1)^{k-j} \binom{d-j}{k-j} h_{M}(j) \geq 0 \text{ for all } k\leq d\}, $$ where $h_M(-)$ is the Hilbert function of $M$, and we prove basic results regard it. Using the theory of hypergeometric functions, we prove that $\operatorname{hdepth}(h_S)=n$, where $S=K[x_1,\ldots,x_n]$. We show that $\operatorname{hdepth}(h_{S/J})=n$, if $J=(f_1,\ldots,f_d)\subset S$ is a complete intersection monomial ideal with $deg(f_i)\geq 2$ for all $1\leq i\leq d$. Also, we show that $\operatorname{hdepth}(h_{\overline M})\geq \operatorname{hdepth}(h_M)$ for any finitely generated graded $S$-module $M$, where $\overline M=M\otimes_S S[x_{n+1}]$.
Comment: 12 pages; we replaced the expression quasi depth with the more appropriate one, Hilbert depth
Databáze: arXiv