On the $C$-diversity of intersecting hypergraphs

Autor: Frankl, Peter, Wang, Jian
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
Popis: Let $\mathcal{F}\subset \binom{X}{k}$ be a family consisting of $k$-subsets of the $n$-set $X$. Suppose that $\mathcal{F}$ is intersecting, i.e., $F\cap F'\neq \emptyset$ for all $F,F'\in \mathcal{F}$. Let $\Delta(\mathcal{F})$ be the maximum degree of $\mathcal{F}$. For a constant $C\geq 1$ the $C$-diversity, $\gamma_C(\mathcal{F})$ is defined as $|\mathcal{F}|-C\Delta(\mathcal{F})$. Define $\mathcal{F}_{123} =\left\{F\in \binom{X}{k}\colon |F\cap \{1,2,3\}|=2\right\}$. It has $C$-diversity $(3-2C)\binom{n-3}{k-2}$. The main result shows that for $1< C<\frac{3}{2}$ and $n\geq \frac{42}{3-2C}k$, $\gamma_C(\mathcal{F})\leq \gamma_C(\mathcal{F}_{123})$ with equality if and only if $\mathcal{F}$ is isomorphic to $\mathcal{F}_{123}$. For the case of ordinary diversity $(C=1)$ a strong stability is proven.
Comment: 17 pages
Databáze: arXiv