Indicator functions, v-numbers and Gorenstein rings in the theory of projective Reed-Muller-type codes
Autor: | González-Sarabia, Manuel, Muñoz-George, Humberto, Ordaz, Jorge A., Sáenz-de-Cabezón, Eduardo, Villarreal, Rafael H. |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s10623-024-01437-3 |
Popis: | For projective Reed--Muller-type codes we give a global duality criterion in terms of the v-number and the Hilbert function of a vanishing ideal. As an application, we provide a global duality theorem for projective Reed--Muller-type codes over Gorenstein vanishing ideals, generalizing the known case where the vanishing ideal is a complete intersection. We classify self dual Reed-Muller-type codes over Gorenstein ideals using the regularity and a parity check matrix. For projective evaluation codes, we give a duality theorem inspired by that of affine evaluation codes. We show how to compute the regularity index of the $r$-th generalized Hamming weight function in terms of the standard indicator functions of the set of evaluation points. Comment: 33 pages |
Databáze: | arXiv |
Externí odkaz: |