Popis: |
We consider a 2D incompressible and electrically conducting fluid in the domain $\mathbb{T}\times\mathbb{R}$. The aim is to quantify stability properties of the Couette flow $(y,0)$ with a constant homogenous magnetic field $(\beta,0)$ when $|\beta|>1/2$. The focus lies on the regime with small fluid viscosity $\nu$, magnetic resistivity $\mu$ and we assume that the magnetic Prandtl number satisfies $\mu^2\lesssim\mathrm{Pr}_{\mathrm{m}}=\nu/\mu\leq 1$. We establish that small perturbations around this steady state remain close to it, provided their size is of order $\varepsilon\ll\nu^{2/3}$ in $H^N$ with $N$ large enough. Additionally, the vorticity and current density experience a transient growth of order $\nu^{-1/3}$ while converging exponentially fast to an $x$-independent state after a time-scale of order $\nu^{-1/3}$. The growth is driven by an inviscid mechanism, while the subsequent exponential decay results from the interplay between transport and diffusion, leading to the dissipation enhancement. A key argument to prove these results is to reformulate the system in terms of symmetric variables, inspired by the study of inhomogeneous fluid, to effectively characterize the system's dynamic behavior. |