Dense Forests of Microshots in Bursts from FRB 20220912A

Autor: Hewitt, Danté M., Hessels, Jason W. T., Ould-Boukattine, Omar S., Chawla, Pragya, Cognard, Ismaël, Gopinath, Akshatha, Guillemot, Lucas, Huppenkothen, Daniela, Nimmo6, Kenzie, Snelders, Mark P.
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
Popis: We report on exceptionally bright bursts (>400 Jy ms) detected from the repeating fast radio burst source FRB 20220912A using the Nan\c{c}ay Radio Telescope (NRT), as part of the ECLAT (Extragalactic Coherent Light from Astrophysical Transients) monitoring campaign. These bursts exhibit extremely luminous, broadband, short-duration structures (~ 16 microseconds), which we term 'microshots' and which can be especially well studied in the NRT data given the excellent signal-to-noise and dynamic range (32-bit samples). The estimated peak flux density of the brightest microshot is 450 Jy. We show that the microshots are clustered into dense 'forests', by modelling them as Weibull distributions and obtaining Weibull shape parameters of approximately 0.5. Our polarimetric analysis reveals that the bursts are nearly 100% linearly polarised; have < 10% circular polarisation fractions; a near-zero average rotation measure of 0.10(6) rad/m^2; and varying polarisation position angles over the burst duration. For one of the bursts, we analyse raw voltage data from simultaneous observations with the Westerbork RT-1 single 25-m dish. These data allow us to measure the scintillation bandwidth, 0.30(3) MHz, and to probe the bursts on (sub-)microsecond timescales. Some important nuances related to dedispersion are also discussed. We propose that the emission mechanism for the broadband microshots is potentially different from the emission mechanism of the broader burst components which still show a residual drift of a few hundred MHz/ms after correcting for dispersion using the microshots. We discuss how the observed emission is phenomenologically analogous to different types of radio bursts from the Sun.
Comment: submitted to MNRAS, 19 pages, 13 figures
Databáze: arXiv