Fundamental scaling relationships revealed in the optical light curves of tidal disruption events

Autor: Mummery, Andrew, van Velzen, Sjoert, Nathan, Edward, Ingram, Adam, Hammerstein, Erica, Fraser-Taliente, Ludovic, Balbus, Steven
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1093/mnras/stad3001
Popis: We present fundamental scaling relationships between properties of the optical/UV light curves of tidal disruption events (TDEs) and the mass of the black hole that disrupted the star. We have uncovered these relations from the late-time emission of TDEs. Using a sample of 63 optically-selected TDEs, the latest catalog to date, we observed flattening of the early-time emission into a near-constant late-time plateau for at least two-thirds of our sources. Compared to other properties of the TDE lightcurves (e.g., peak luminosity or decay rate) the plateau luminosity shows the tightest correlation with the total mass of host galaxy ($p$-value of $2 \times 10^{-6}$, with a residual scatter of 0.3 dex). Physically this plateau stems from the presence of an accretion flow. We demonstrate theoretically and numerically that the amplitude of this plateau emission is strongly correlated with black hole mass. By simulating a large population of TDEs, we determine a plateau luminosity-black hole mass scaling relationship well described by $ \log_{10} \left(M_{\bullet}/M_{\odot} \right) = 1.50 \log_{10} \left( L_{\rm plat}/10^{43} {\rm erg \, s^{-1}} \right) + 9.0 $. The observed plateau luminosities of TDEs and black hole masses in our large sample are in excellent agreement with this simulation. Using the black hole mass predicted from the observed TDE plateau luminosity, we reproduce the well-known scaling relations between black hole mass and galaxy velocity dispersion. The large black hole masses of 10 of the TDEs in our sample allow us to provide constraints on their black hole spins, favouring rapidly rotating black holes. We add 49 (34) black hole masses to the galaxy mass (velocity dispersion) scaling relationships, updating and extending these correlations into the low black hole mass regime.
Comment: Version 2: Data and analysis scripts now available at https://github.com/sjoertvv/manyTDE. 25 pages + appendices, 20 figures. Accepted version in MNRAS
Databáze: arXiv