Harmonic Bloch Space on the Real Hyperbolic Ball
Autor: | Ureyen, A. Ersin |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study the Bloch and the little Bloch spaces of harmonic functions on the real hyperbolic ball. We show that the Bergman projections from $L^\infty(\mathbb B)$ to $\mathcal B$, and from $C_0(\mathbb B)$ to $\mathcal B_0$ are onto. We verify that the dual space of the hyperbolic harmonic Bergman space $\mathcal B^1_\alpha$ is $\mathcal B$ and its predual is $\mathcal B_0$. Finally, we obtain an atomic decomposition of Bloch functions as a series of Bergman reproducing kernels. Comment: 19 pages |
Databáze: | arXiv |
Externí odkaz: |