The set of limits of Riemann integral sums of a multifunction and Banach space geometry
Autor: | Slobodianiuk, Denys |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $X$ be a Banach space and $F: [0, 1] \rightarrow 2^{X} \setminus \{ \varnothing \}$ be a bounded multifunction. We study properties of the set $I(F)$ of limits in Hausdorff distance of Riemann integral sums of $F$. The main results are: (1) $I(F)$ is convex in the case of finite-dimensional $X$; (2) $I(F) = I(\operatorname{conv} F)$ in B-convex spaces or for compact-valued multifunctions; (3) $I(F)$ consists of convex sets whenever $X$ is B-convex; (4) $I(F)$ is star-shaped (thus non-empty) for compact-valued multifunctions in separable spaces. (5) For each infinite-dimensional Banach space there is a bounded multifunction with empty $I(F)$. Comment: 12 pages |
Databáze: | arXiv |
Externí odkaz: |