Surrogate modelling and uncertainty quantification based on multi-fidelity deep neural network

Autor: Li, Zhihui, Montomoli, Francesco
Rok vydání: 2023
Předmět:
Zdroj: Reliab.Eng.Syst.Saf. 245 (2024) 109975
Druh dokumentu: Working Paper
DOI: 10.1016/j.ress.2024.109975
Popis: To reduce training costs, several Deep neural networks (DNNs) that can learn from a small set of HF data and a sufficient number of low-fidelity (LF) data have been proposed. In these established neural networks, a parallel structure is commonly proposed to separately approximate the non-linear and linear correlation between the HF- and LF data. In this paper, a new architecture of multi-fidelity deep neural network (MF-DNN) was proposed where one subnetwork was built to approximate both the non-linear and linear correlation simultaneously. Rather than manually allocating the output weights for the paralleled linear and nonlinear correction networks, the proposed MF-DNN can autonomously learn arbitrary correlation. The prediction accuracy of the proposed MF-DNN was firstly demonstrated by approximating the 1-, 32- and 100-dimensional benchmark functions with either the linear or non-linear correlation. The surrogating modelling results revealed that MF-DNN exhibited excellent approximation capabilities for the test functions. Subsequently, the MF DNN was deployed to simulate the 1-, 32- and 100-dimensional aleatory uncertainty propagation progress with the influence of either the uniform or Gaussian distributions of input uncertainties. The uncertainty quantification (UQ) results validated that the MF-DNN efficiently predicted the probability density distributions of quantities of interest (QoI) as well as the statistical moments without significant compromise of accuracy. MF-DNN was also deployed to model the physical flow of turbine vane LS89. The distributions of isentropic Mach number were well-predicted by MF-DNN based on the 2D Euler flow field and few experimental measurement data points. The proposed MF-DNN should be promising in solving UQ and robust optimization problems in practical engineering applications with multi-fidelity data sources.
Databáze: arXiv