On elements of prescribed norm in maximal orders of a quaternion algebra
Autor: | Goren, Eyal Z., Love, Jonathan R. |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $\mathcal{O}$ be a maximal order in the quaternion algebra over $\mathbb{Q}$ ramified at $p$ and $\infty$. We prove two theorems that allow us to recover the structure of $\mathcal{O}$ from limited information. The first says that for any infinite set $S$ of integers coprime to $p$, $\mathcal{O}$ is spanned as a $\mathbb{Z}$-module by elements with norm in $S$. The second says that $\mathcal{O}$ is determined up to isomorphism by its theta function. Comment: 29 pages, 3 figures |
Databáze: | arXiv |
Externí odkaz: |