On elements of prescribed norm in maximal orders of a quaternion algebra

Autor: Goren, Eyal Z., Love, Jonathan R.
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
Popis: Let $\mathcal{O}$ be a maximal order in the quaternion algebra over $\mathbb{Q}$ ramified at $p$ and $\infty$. We prove two theorems that allow us to recover the structure of $\mathcal{O}$ from limited information. The first says that for any infinite set $S$ of integers coprime to $p$, $\mathcal{O}$ is spanned as a $\mathbb{Z}$-module by elements with norm in $S$. The second says that $\mathcal{O}$ is determined up to isomorphism by its theta function.
Comment: 29 pages, 3 figures
Databáze: arXiv