Entanglement in XYZ model on a spin-star system: Anisotropy vs. field-induced dynamics

Autor: Krishnan, Jithin G., J., Harikrishnan K., Pal, Amit Kumar
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
Popis: We consider a star-network of $n=n_0+n_p$ spin-$\frac{1}{2}$ particles, where interaction between $n_0$ central spins and $n_p$ peripheral spins are of the XYZ-type. In the limit $n_0/n_p\ll 1$, we show that for odd $n$, the ground state is doubly degenerate, while for even $n$, the energy gap becomes negligible when $n$ is large, inducing an \emph{effective} double degeneracy. In the same limit, we show that for vanishing $xy$-anisotropy $\gamma$, bipartite entanglement on the peripheral spins computed using either a partial trace-based, or a measurement-based approach exhibits a logarithmic growth with $n_p$, where the sizes of the partitions are typically $\sim n_p/2$. This feature disappears for $\gamma\neq 0$, which we refer to as the \emph{anisotropy effect}. Interestingly, when the system is taken out of equilibrium by the introduction of a magnetic field of constant strength on all spins, the time-averaged bipartite entanglement on the periphery at the long-time limit exhibits a logarithmic growth with $n_p$ irrespective of the value of $\gamma$. We further study the $n_0/n_p\gg 1$ and $n_0/n_p\rightarrow 1$ limits of the model, and show that the behaviour of bipartite peripheral entanglement is qualitatively different from that of the $n_0/n_p\ll 1$ limit.
Comment: 13 pages, 6 figures
Databáze: arXiv