Spectral Metric and Einstein Functionals for Hodge-Dirac operator

Autor: Dąbrowski, Ludwik, Zalecki, Paweł, Sitarz, Andrzej
Rok vydání: 2023
Předmět:
Zdroj: J. Noncommut. Geom. (2024)
Druh dokumentu: Working Paper
DOI: 10.4171/JNCG/573
Popis: We examine the metric and Einstein bilinear functionals of differential forms introduced in Adv.Math.,Vol.427,(2023)1091286, for Hodge-Dirac operator $d+\delta$ on an oriented even-dimensional Riemannian manifold. We show that they reproduce these functionals for the canonical Dirac operator on a spin manifold up to a numerical factor. Furthermore, we demonstrate that the associated spectral triple is spectrally closed, which implies that it is torsion-free.
Comment: Final version
Databáze: arXiv