Spectral Metric and Einstein Functionals for Hodge-Dirac operator
Autor: | Dąbrowski, Ludwik, Zalecki, Paweł, Sitarz, Andrzej |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | J. Noncommut. Geom. (2024) |
Druh dokumentu: | Working Paper |
DOI: | 10.4171/JNCG/573 |
Popis: | We examine the metric and Einstein bilinear functionals of differential forms introduced in Adv.Math.,Vol.427,(2023)1091286, for Hodge-Dirac operator $d+\delta$ on an oriented even-dimensional Riemannian manifold. We show that they reproduce these functionals for the canonical Dirac operator on a spin manifold up to a numerical factor. Furthermore, we demonstrate that the associated spectral triple is spectrally closed, which implies that it is torsion-free. Comment: Final version |
Databáze: | arXiv |
Externí odkaz: |