Correcting matrix products over the ring of integers

Autor: Wu, Yu-Lun, Wang, Hung-Lung
Rok vydání: 2023
Předmět:
Zdroj: Information Processing Letters 186 (2024), 106496
Druh dokumentu: Working Paper
DOI: 10.1016/j.ipl.2024.106496
Popis: Let $A$, $B$, and $C$ be three $n\times n$ matrices. We investigate the problem of verifying whether $AB=C$ over the ring of integers and finding the correct product $AB$. Given that $C$ is different from $AB$ by at most $k$ entries, we propose an algorithm that uses $O(\sqrt{k}n^2+k^2n)$ operations. Let $\alpha$ be the largest absolute value of an entry in $A$, $B$, and $C$. The integers involved in the computation are of $O(n^3\alpha^2)$.
Comment: 10 pages
Databáze: arXiv