Applying Superfluid Helium to Light Dark Matter Searches: Demonstration of the HeRALD Detector Concept

Autor: Anthony-Petersen, R., Biekert, A., Chang, C. L., Chang, Y., Chaplinsky, L., Dushkin, A., Fink, C. W., Garcia-Sciveres, M., Guo, W., Hertel, S. A., Li, X., Lin, J., Mahapatra, R., Matava, W., McKinsey, D. N., Osterman, D. Z., Patel, P. K., Penning, B., Pinckney, H. D., Platt, M., Pyle, M., Qi, Y., Reed, M., Rischbieter, G. R. C, Romani, R. K., Serafin, A., Serfass, B., Smith, R. J., Sorensen, P., Suerfu, B., Suzuki, A., Velan, V., Wang, G., Wang, Y., Watkins, S. L., Williams, M. R.
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
Popis: The SPICE/HeRALD collaboration is performing R&D to enable studies of sub-GeV dark matter models using a variety of target materials. Here we report our recent progress on instrumenting a superfluid $^4$He target mass with a transition-edge sensor based calorimeter to detect both atomic signals (e.g. scintillation) and $^4$He quasiparticle (phonon and roton) excitations. The sensitivity of HeRALD to the critical "quantum evaporation" signal from $^4$He quasiparticles requires us to block the superfluid film flow to the calorimeter. We have developed a heat-free film-blocking method employing an unoxidized Cs film, which we implemented in a prototype "HeRALD v0.1" detector of $\sim$10~g target mass. This article reports initial studies of the atomic and quasiparticle signal channels. A key result of this work is the measurement of the quantum evaporation channel's gain of $0.15 \pm 0.012$, which will enable $^4$He-based dark matter experiments in the near term. With this gain the HeRALD detector reported here has an energy threshold of 145~eV at 5 sigma, which would be sensitive to dark matter masses down to 220~MeV/c$^2$.
Comment: 14 pages, 9 figures
Databáze: arXiv