Spey: smooth inference for reinterpretation studies
Autor: | Araz, Jack Y. |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | SciPost Phys. 16, 032 (2024) |
Druh dokumentu: | Working Paper |
DOI: | 10.21468/SciPostPhys.16.1.032 |
Popis: | Statistical models serve as the cornerstone for hypothesis testing in empirical studies. This paper introduces a new cross-platform Python-based package designed to utilise different likelihood prescriptions via a flexible plug-in system. This framework empowers users to propose, examine, and publish new likelihood prescriptions without developing software infrastructure, ultimately unifying and generalising different ways of constructing likelihoods and employing them for hypothesis testing within a unified platform. We propose a new simplified likelihood prescription, surpassing previous approximation accuracies by incorporating asymmetric uncertainties. Moreover, our package facilitates the integration of various likelihood combination routines, thereby broadening the scope of independent studies through a meta-analysis. By remaining agnostic to the source of the likelihood prescription and the signal hypothesis generator, our platform allows for the seamless implementation of packages with different likelihood prescriptions, fostering compatibility and interoperability. Comment: 30 pages, 8 figures. corrections in the text |
Databáze: | arXiv |
Externí odkaz: |