How many digits are needed?
Autor: | Herbst, Ira W., Møller, Jesper, Svane, Anne Marie |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $X_1,X_2,...$ be the digits in the base-$q$ expansion of a random variable $X$ defined on $[0,1)$ where $q\ge2$ is an integer. For $n=1,2,...$, we study the probability distribution $P_n$ of the (scaled) remainder $T^n(X)=\sum_{k=n+1}^\infty X_k q^{n-k}$: If $X$ has an absolutely continuous CDF then $P_n$ converges in the total variation metric to the Lebesgue measure $\mu$ on the unit interval. Under weak smoothness conditions we establish first a coupling between $X$ and a non-negative integer valued random variable $N$ so that $T^N(X)$ follows $\mu$ and is independent of $(X_1,...,X_N)$, and second exponentially fast convergence of $P_n$ and its PDF $f_n$. We discuss how many digits are needed and show examples of our results. The convergence results are extended to the case of a multivariate random variable defined on a unit cube. Comment: 22 pages, 3 figures |
Databáze: | arXiv |
Externí odkaz: |