On approximation by tight wavelet frames on the field of $p$-adic numbers
Autor: | Lukomskii, S. F., Vodolazov, A. M. |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We discuss the problem on approximation by tight step wavelet frames on the field $\mathbb{Q}_p$ of $p$-adic numbers. Let $G_n=\{x=\sum_{k=n}^\infty x_k p^k\}$, $X$ be a set of characters. We define a step function $\lambda({\chi})$ that is constant on cosets ${G}_n^\bot\setminus{G}_{n-1}^\bot$ by equalities $\lambda ({G}_n^\bot\setminus{G}_{n-1}^\bot)=\lambda_n>0$ for which $\sum\frac{1}{\lambda_n}<\infty$. We find the order of approximation of functions $f$ for which $\int_X|\lambda( {\chi})\hat{f}(\chi)|^2d\nu(\chi)<\infty$ Comment: 15 pages, 2 figures. arXiv admin note: text overlap with arXiv:2203.06352 |
Databáze: | arXiv |
Externí odkaz: |