Note on a numerical equality regarding the eta invariant on Berger spheres
Autor: | Dowker, J. S. |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | The Dirac APS eta invariant on a Berger sphere of dimension $2n-1$ is discovered, numerically, to coincide, up to spin factors, with the Dirac conformal anomaly on a round sphere of even dimension, $n$. The analytical expression, given in terms of a generalised Bernoulli polynomial, is shown to equal a known conjecture for the eta invariant. Weingart's generating function is also obtained with no extra work. Comment: 6 pages. Equivalence to Weingart's generating function now derived. Text tidied. Comments and two references added |
Databáze: | arXiv |
Externí odkaz: |