Autor: |
Amouch, Mohamed, León-Saavedra, Fernando, de la Rosa, M. P. Romero |
Rok vydání: |
2023 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
An operator $T$ acting on a separable complex Hilbert space $H$ is said to be hypercyclic if there exists $f\in H$ such that the orbit $\{T^n f:\ n\in \mathbb{N}\}$ is dense in $H$. Godefroy and Shapiro \cite{GoSha} characterized those elements in the commutant of the Hardy backward shift which are hypercyclic. In this paper we study some dynamics properties of operators $X$ that $\lambda$-commute with the Hardy backward shift $B$, that is, $BX=\lambda XB$. |
Databáze: |
arXiv |
Externí odkaz: |
|