Popis: |
Symmetries associated with the Hamiltonian describing bilayer graphene subjected to a constant magnetic field perpendicular to the plane of the bilayer are calculated using polar coordinates. These symmetries are then applied to explain some fundamental properties, such as the spectrum and the integer pseudo-spin character of the eigenfunctions. The probability and current densities of the bilayer Hamiltonian have also been calculated in polar coordinates and shown to be gauge invariant and scalar under generalized rotations. We also define appropriate coherent states of this system as eigenfunctions, with complex eigenvalues, of a suitable chose annihilation operator. In this framework, symmetries are also useful to show the meaning of the complex eigenvalue in terms of expected values. The local current density of these coherent states is shown to exhibit a kind of radial component interference effect, something that has gone unnoticed until now. Some of these results that have just been exposed are graphically illustrated throughout the manuscript. |