Periodicity of general multidimensional continued fractions using repetend matrix form

Autor: Řada, Hanka, Starosta, Štěpán, Kala, Vítězslav
Rok vydání: 2023
Předmět:
Zdroj: Expo. Math. 42 (2024), article 125571, 36 pp
Druh dokumentu: Working Paper
DOI: 10.1016/j.exmath.2024.125571
Popis: We consider expansions of vectors by a general class of multidimensional continued fraction algorithms. If the expansion is eventually periodic, then we describe the possible structure of a matrix corresponding to the repetend, and use it to prove that a number of vectors has an eventually periodic expansion in the Algebraic Jacobi--Perron Algorithm. Further, we give criteria for vectors to have purely periodic expansions; in particular, the vector cannot be totally positive.
Comment: 31 pages
Databáze: arXiv