Spectral radius and k-factor-critical graphs
Autor: | Zhou, Sizhong, Sun, Zhiren, Zhang, Yuli |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | For a nonnegative integer $k$, a graph $G$ is said to be $k$-factor-critical if $G-Q$ admits a perfect matching for any $Q\subseteq V(G)$ with $|Q|=k$. In this article, we prove spectral radius conditions for the existence of $k$-factor-critical graphs. Our result generalises one previous result on perfect matchings of graphs. Furthermore, we claim that the bounds on spectral radius in Theorem 3.1 are sharp. Comment: 12 pages |
Databáze: | arXiv |
Externí odkaz: |