Torus Quotients of Richardson Varieties
Autor: | Dake, Somnath, Garge, Shripad M., Nayek, Arpita |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | For $1\le r\le n-1,$ let $G_{r,n}$ denote the Grassmannian parametrizing $r$-dimensional subspaces of $\mathbb{C}^{n}.$ Let $(r,n)=1.$ In this article we show that the GIT quotients of certain Richardson varieties in $G_{r,n}$ for the action of a maximal torus in $SL(n,\mathbb{C})$ are the product of projective spaces with respect to the descent of a suitable line bundle. Comment: 13 pages |
Databáze: | arXiv |
Externí odkaz: |