Limit spectral measures of matrix distributions of metric triples
Autor: | Vershik, A., Petrov, F. |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Functional Analysis and its Applications, v 57,#1,2023 |
Druh dokumentu: | Working Paper |
Popis: | A notion of the limit spectral measure of a metric triple (i.e., a metric measure space) is defined. If the metric is square integrable, then the limit spectral measure is deterministic and coinsides with the spectrum of the integral operator in $L^2(\mu)$ with kernel $\rho$. We construct an example in which there is no deterministic spectral measure. Comment: 5 pp, Ref.12 |
Databáze: | arXiv |
Externí odkaz: |