Subelliptic $p$-Laplacian spectral problem for H\'ormander vector fields
Autor: | Karazym, Mukhtar, Suragan, Durvudkhan |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Based on variational methods, we study the spectral problem for the subelliptic $p$-Laplacian arising from smooth H\"ormander vector fields. We derive the smallest eigenvalue, prove its simplicity and isolatedness, establish the positivity of the first eigenfunction and show H\"older regularity of eigenfunctions. Moreover, we determine the best constant for the $L^{p}$-Poincar\'e-Friedrichs inequality for H\"ormander vector fields as a byproduct. Comment: 18 pages |
Databáze: | arXiv |
Externí odkaz: |